
Bicycle Route Planning on a Dynamic Graph

April 13, 2017

Lewis McQuillan
Student ID: 1444167

Supervised by Alan P. Sexton

Submitted in conformity with the requirements
for the degree of BSc Computer Science

School of Computer Science
University of Birmingham

Copyright c© 2017 School of Computer Science, University of Birmingham

Declaration

The material contained within this thesis has not previously been submitted for a degree
at the University of Birmingham or any other university. The research reported within
this thesis has been conducted by the author unless indicated otherwise.

Signed ...

i

Abstract

When planning a bicycle tour, users are often concerned with more than just the shortest
or even the fastest route. Safety is a major concern, especially for beginner cyclists, so
there may be occasions when certain roads should be avoided. Furthermore, there are
often times when cyclists could take shortcuts which are not represented in map data and
are therefore not accounted for during the route planning.

This report will cover the design, implementation and evaluation of a web application
that allows users to plan routes more suitable for cyclists through the use of soft con-
straints on the search, and by modifying map data. The search uses a bi-directional A*
implementation on a contracted graph of England.

The project has been rather successful. The application allows users to plan routes across
England, in fair time, using a series of waypoints. Users are able to save modifications
to the graph, classified as ’shortcuts’ and ’avoids’, which will then be considered in the
search. Users may then choose to publish their modifications which allows other users to
use them during planning. If the graph were to be expanded to cover a larger area such
as Europe, an alternative search technique would likely be required in order to return a
longer path within feasible time.

Location of Git Repository

All software for this project can be found at:
https://git-teaching.cs.bham.ac.uk/mod-40cr-proj-2016/ljm467.git/

ii

Acknowledgements

Firstly, I would like to thank my project supervisor, Alan P. Sexton, for his support
and guidance throughout my project. I would also like to thank Robert Hendley for his
feedback in the midterm inspection. Finally, I would like to thank my family and friends,
who have supported me for the duration of this project.

iii

Contents

Abstract... ii

1 Introduction... 1

1.1 Problem Statement ... 1

1.2 Aim and Objectives... 1

1.3 Report Structure .. 2

2 Background.. 4

2.1 Current Solutions ... 4

2.1.1 CycleStreets ... 4

2.1.2 MapMyRide ... 6

2.1.3 PlotARoute ... 7

2.1.4 Summary... 8

2.2 Route Planning in Transportation Networks .. 8

2.2.1 Arc-Flags .. 8

2.2.2 Contraction.. 9

2.2.3 Query Optimisation... 9

2.2.4 ALT ... 10

2.3 OpenStreetMap Data .. 10

2.3.1 PBF Format .. 11

2.3.2 Elements ... 11

2.3.3 Map Tiles .. 11

2.4 Other Data.. 13

2.4.1 Postcode Data .. 13

2.4.2 Elevation Data ... 13

2.5 GPX Files ... 14

3 Requirements and Specification.. 15

3.1 Project Scope... 15

3.1.1 User Identification... 15

3.1.2 Assumptions .. 15

iv

3.2 Requirements ... 16

3.2.1 Functional Requirements .. 16

3.2.2 Non-Functional Requirements.. 17

3.3 Constraints.. 17

4 Design.. 18

4.1 System Design.. 18

4.1.1 Architecture... 18

4.1.2 Database Design ... 19

4.2 Selection of Search Technique.. 20

4.3 Technologies .. 20

4.3.1 Web Server .. 20

4.3.2 Database ... 20

4.3.3 Generating Map Tiles .. 21

4.3.4 Web Map .. 21

4.4 User Interface .. 21

4.4.1 Frameworks ... 22

4.4.2 Wireframe ... 23

5 Implementation.. 24

5.1 User Authentication and Validation.. 24

5.2 Security .. 25

5.3 Slippy Map.. 25

5.4 API.. 27

5.5 JSON Data Representation... 28

5.5.1 Waypoints and Routes ... 28

5.5.2 Shortcuts and Avoids ... 29

5.6 Route Finding.. 30

5.6.1 Constructing and Preprocessing the Graph 30

5.6.2 Querying ... 31

5.7 Map Modifications .. 31

5.7.1 Shortcuts... 32

5.7.2 Avoids... 33

5.7.3 Loading and Publishing Modifications... 33

5.8 Search Constraints .. 34

v

6 Testing... 36

6.1 Structural Testing... 36

6.1.1 Unit Testing... 36

6.2 Functional Testing .. 37

7 Project Management.. 41

7.1 Changes to Original Proposal.. 41

7.2 Schedule.. 41

7.3 Weekly Meetings... 41

7.4 Git Version Control... 41

8 Evaluation.. 42

8.1 Search Evaluation ... 42

8.2 User Evaluation.. 43

8.2.1 Discussion of Results ... 44

9 Discussion .. 45

9.1 Summary of Achievements.. 45

9.2 Further Work ... 45

10 Conclusion ... 46

Bibliography .. 47

Appendices .. 50

A Project Information ... 51

A.1 Directory Tree.. 51

A.2 Installation Information ... 52

B Current Solution Study.. 54

B.1 Routes .. 54

B.2 MapMyRide... 54

C API Documentation ... 55

D Gantt Chart... 57

E User Feedback Results ... 58

vi

CHAPTER 1

Introduction

1.1 Problem Statement

Route planning for cycling is fundamentally different to other modes of transport, such
as driving. Typically with route planning, users are interested in either the shortest or
fastest path, while with cycling there are other considerations to be made.

In a recent government survey (Department of Transport, 2014) 64% of the respondents
were deterred from cycling as they believed the roads were too dangerous. Clearly safety
concerns are a significant factor for why many people avoid cycling, so it is important for
route planners to accommodate for this. Adjusting the search to follow quieter and safer
roads could address this issue, but it is important to consider the trade-off with additional
distance by following these paths.

There may be times where a cyclist could access areas or make shortcuts which are not
represented in the map data. An example of this scenario would be a park without any
cycle paths, clearly a cyclist could still ride through the park, however a route planner will
typically detour them around the park. Alternatively there may be areas cyclists wish to
avoid such as a specific busy roundabout, or a particularly steep hill.

As with any route planning, the efficiency and speed of the search is critical. It is important
to consider that the search will be carried out on a large transportation network. While
it is possible to use Dijkstra’s classical algorithm on a graph of this size, it would simply
not be practical (Delling, 2009). It is therefore important to review what techniques are
available in order to achieve acceptable search speeds.

1.2 Aim and Objectives

The aim of this project is to produce a web application which allows the planning of
bicycle tours throughout England. The system should allow for route planning more
tailored towards bicycles rather than a more general shortest path route. In turn, this
should allow for current cyclists to take advantage of more convenient routes, while also
encouraging non-cyclists to participate through a safer experience.

1

CHAPTER 1. INTRODUCTION 2

The methods that will accommodate for a more tailored search include the ability to follow
safer routes by adapting the heuristic function, and allowing users to modify the map to
add information which is not represented in the original data.

In order the achieve the project aim, the following objectives have been established:

• Understand how current solutions have attempted the problem, and identify the
strengths, weaknesses and characteristics they possess.

• Investigate and review the speed-up techniques available for search over large trans-
portation networks.

• Provide an analysis of the problem and realise the project requirements.

• Produce a structured design of the web application.

• Identify which technologies are to be used for the implementation of the solution,
and justify their selection.

• Implement the web application to service potential users.

• Thoroughly test the implementation to check for any errors and unexpected be-
haviour.

• Evaluate the success of the solution in terms of usability, performance, and accuracy.

• Compare the web application to current solutions, in order to gain an understanding
of the strengths and weaknesses of the solution.

• Discuss the achievements and limitations of the solution, and establish possible fur-
ther work.

1.3 Report Structure

The report is structured into nine chapters.

2. Background
This chapter provides research that has been carried out in order to gain a deeper
understanding of the problem. The section includes a review of current solutions in
order to explore what is currently offered, and where these systems excel and fall
behind.

3. Requirements and Specification
This chapter gives a detailed analysis of what is required of the software system.
Through this analysis, the user requirements have been established and use cases
have been written in order to describe how the system should behave.

4. Design
This chapter provides an high-level structural overview of the system. The chapter
documents and justifies design decisions, and provides a description of the algorithms
used.

5. Implementation
This chapter provides details on how the solution has been implemented. We explore
the workings of the key aspects of the system, and what algorithms have been used.

CHAPTER 1. INTRODUCTION 3

6. Testing
This chapter provides an overview of how the software has been validated and testing
through means of white-box and black-box techniques.

7. Project Management
This chapter explains what management strategies have been used to ensure the
success of the project within the given time constraints.

8. Evaluation
This chapter provides details on the process and results of evaluation. The success of
the solution is evaluated, through the evaluation of algorithm choices, user feedback,
comparisons to current solutions and the overall robustness of the system.

9. Discussion
This chapter will summarise the achievements and deficiencies of the project. The
inadequacies of the project will be identified, and an explanation will be provided
for why they occurred, and how they could be resolved. Further work will also be
explored and discussed.

10. Conclusion
This chapter will give a summary of how the provided system addresses the stated
problem.

CHAPTER 2

Background

2.1 Current Solutions

In this section, a set of current solutions will be examined. The study will consider the
usability of the system, quality of the route, speed the route is delivered, among other
novel features on a case-by-case basis. The same set of routes (Appendix B.1) will be
tested for each solution in order to make a fair comparison of the performance of the
search. Each route will be referenced by their reference in the table.

2.1.1 CycleStreets

CycleStreets (2017) is one of the leading bicycle route planners in the UK. The website
offers an A-to-B planning system - to plan a route you simply enter a start location, an
end location, and an expected speed. It is worth noting that at this current time, the
system is in beta testing.

The start and end location can be searched for using an address, selected by clicking on
the map, or by detecting your GPS location. The interface to do so is very intuitive, and
further adjustments can be made by dragging the markers placed.

Upon clicking a “Plan this journey” button, the page is redirected and the system delivers
three route options; the fastest route, a balanced route, and the quietest route. It appears
that the fastest route prioritises primary roads to avoid many turns, the quietest route
follows side streets until it is necessary to travel on a primary road, and the balanced route
similarly follows sides streets but has a softer constraint on when to move to primary roads.
The system provides a wide-range of information for a given route, including the estimated
journey time, distance, elevation data, calories burnt and a scale of “quietness”. The route
also provides turn-by-turn directions, providing an overview at each point in the journey.
Once the route has been calculated, no modifications can be made, so no further waypoints
can be added and the current start and end can not be adjusted with ease. This means
the user must return back to the start if changes are to be made.

The system handled route A very well. The routes were delivered in approximately a
second, and each route was well representative of the “type”, i.e. the fastest route followed
primary roads, and the quietest route followed side-streets and was clearly safer. Producing
the path for route B was rather slow, taking about fifteen seconds to produce the result,

4

CHAPTER 2. BACKGROUND 5

Figure 2.1: CycleStreets Route A

however the calculated routes, like route A, were impressive. The system would not allow
route C to be planned, as it has a maximum distance of 400km. while this would not be
a huge problem if the system allowed further waypoints to be added, the fact that it is an
A-to-B planner means that it does not facilitate for journeys greater than 400km.

Overall this is a fairly robust solution, however it does have a few drawbacks. The quality
of the routes produced is rather impressive, especially providing users with the option to
choose routes of varying quietness. It is clearly targeted towards short-medium distance
bicycle routes. While this is not necessarily a problem, it appears to be this way due to
a slow search implementation, and it seems unfortunate to limit the good quality routes
by distance. Some aspects of the UI are done well, while others could likely do with some
work. The initial selection of the start and end points is easy to use, however it would be
preferable to be able to modify the route without having to restart.

CHAPTER 2. BACKGROUND 6

2.1.2 MapMyRide

MapMyRide (2017) is another leading bicycles route planner, which has worldwide cover-
age. A website is available to plan routes via a set of waypoints, while a mobile application
has also been provided to follow routes through GPS tracking. The mobile application
will not be considered, however, as the focus of this project is the route planning.

The website allows you to begin with a blank route, or by uploading a GPX file (see
Section 2.5). However, if a GPX file is uploaded changes can not be made, so this feature
is more targeted towards the route following. The UI for planning a route is intuitive;
waypoints can be added by searching for an address, and then clicking on the map where
you want the point to be added. Once a waypoint has been added, a path will be drawn
from the previous waypoint. One noticeable drawback of the interface is that it is easy to
mistakenly add waypoints while attempting to pan and zoom the map. While occasionally
you are able to delete these waypoints, the functionality does not seem consistent, and can
lead to having to restart the route from scratch. There is not a great deal of information
provided about the route, other than overall distance and elevation, so perhaps a few more
fields such as ETA, quietness, etc. would be useful.

Figure 2.2: MapMyRide Route A

The search-speed for the solution is impressive, each route yielding a result in under a
second. There was not a lot of flexibility for the route planning. For route A, the path
followed the canals where possible, which would most likely by preferable, however this
route does nearly double the distance, so the option to take a more direct route may be
helpful. While the system does provide an “Avoid Highways” option, this appears to only
avoid motorways, which are illegal to cycle on either way according to the Highway Code
(Gov.uk, 2015). The generated paths for the longer routes were to a good standard, they
were direct and followed secondary roads which were close to motorways. However, to
achieve the impressive search speed, it appears that the system preprocesses the graph
through contraction (see Section 2.2.2), and searches between the core nodes, while in-
formation is lost about the component nodes, following the route can then become little
difficult at times. An example of this is shown in Appendix B.2.

To conclude, this solution handles the problem to a high standard. The UI is generally
easy to use, despite the issue with accidentally adding waypoints. The implementation of
the search provides a fast response and routes suitable for cyclists. It would be improved if

CHAPTER 2. BACKGROUND 7

for longer distances the route kept all of the information for following the road, and users
were given the option to take more direct routes in order to reduce the travel distance.

2.1.3 PlotARoute

PlotARoute (2017) is another leading bicycle route planner with worldwide coverage. The
solutions takes a more similar form to MapMyRide as opposed to CycleStreets in terms
of UI and functionality.

The website begins with a blank route and similarly to MapMyRide, waypoints can be
added by searching for an address and clicking on the map. The website gives a wide
range of data for a route, including a break down of directions, estimated time of arrival
per waypoint, and elevation data.

Figure 2.3: PlotARoute Route A

The planner calculated route A quickly, and returned the same path as MapMyRide.
Again, while this route is probably preferable, the planner does not provide the option
to take a more direct route. While the longer routes did take a little longer to process
than MapMyRide, the quality of the routes were of a higher standard as they followed the
roads exactly, leading to less ambiguity.

The solution is a good example of how the problem can be addressed. While it would be
desirable to see more flexibility in terms of planning and perhaps an improvement to search
speed, the system performs well with regard to usability and quality of routes delivered.

CHAPTER 2. BACKGROUND 8

2.1.4 Summary

The reviewed solutions each have their strengths and weaknesses. It is clear that each of
the systems acknowledge that cyclists desire safer routes, and they accommodate for this
through favouring quieter roads.

It appears none of these systems address the problem of modifying map data in order to
take shortcuts or avoid specific areas, so the introduction of this functionality would be
novel.

2.2 Route Planning in Transportation Networks

It is important to carefully consider the search technique when working with a road network
of great size. Schultes (2008) states that using a classical Dijkstra’s (1959) approach would
yield very slow query times, and would be computationally expensive. Given a graph
G = (V,E), Dijkstra’s computes the shortest path from the start node s to all nodes
v ∈ V , rather than just a target node t. This clearly is too much processing for such a
large graph. On the other hand, using an aggressive heuristic to guide the search would
produce inaccurate routes. It is difficult to find a suitable trade-off between speed and
suboptimal routes when using this method, so there has been considerable research into
techniques which can produce faster and more accurate results (Schultes, 2008).

Delling (2009) states that the majority of speed-up techniques split the work into two
phases. The preprocessing stage computes additional data which can be used to accelerate
the query. The preprocessing of the graph can take anywhere between a few minutes to
a few days, depending on the technique used, however the work done at this stage can
reduce query time to a matter of milliseconds. It is also important to make the distinction
between a dynamic and static graph at this stage. A static graph consists of a fixed
set of vertices and edges, whereas a dynamic graph is subject to modification. In the
case of static graphs the preprocessing can be executed once, while for dynamic graphs
each update requires further computation. As this solution aims to allow the user to
modify the graph, it is important to consider a technique which allows for fast and regular
preprocessing, while still providing considerable speed-ups for the querying.

Below we examine what techniques could be used to improve search-times, in regard to
both the preprocessing and query stage.

2.2.1 Arc-Flags

To begin this technique, the graph is first partitioned into a set of regions. While these
regions should be connected, each node should only belong to one region (Lauther, 2004).
Then for each edge, we assign a set of flags - one for each region. If the edge lies on the
shortest path to a region then we set that flag to true (Delling, 2009). This means we can
use a modified implementation of Dijkstra’s to follow only edges that lie on the shortest
path to a given target nodes region.

CHAPTER 2. BACKGROUND 9

This method has its advantages and its drawbacks. The technique has a considerable
effect on query-time, Lauther (2004) notes an average speed-up of a factor of 64 compared
to a graph without preprocessing. However, it is clear that this preprocessing is very
computationally expensive both in terms of time and space. Furthermore, Delling (2009)
describes the “coning” effect, where more edges lie on a shortest path as the target region
is approached, reducing the speed-up of the technique. Eventually, when the target region
is entered all edges are considered, as every edge has the own-region flag set to true. This
effect can be eased through the use of bi-directional arc-flags or partitioning the graph
more granularly, however this further increases the time and space required (Delling, 2009).

While this technique could be effectively utilised on a static graph, its use would be
infeasible on a dynamic graph. Updating the graph would require a considerable amount
of processing in order to recalculate which edges lie on the shortest path.

2.2.2 Contraction

The contraction technique extracts a subgraph from the input graph, which can be referred
to as the core (Delling, 2009). The method is split into two stages; node reduction and edge
reduction. During node reduction, we iteratively bypass nodes until no node is bypassable.
To bypass a node x, we remove all of its incoming edges I and outgoing edges O, and for
each node u in the tails of I we introduce new edges to each node v in the heads of O,
with length len(u,x) + len(x, v). The newly inserted edges are considered shortcut edges1.
A node which has been bypassed is considered part of the component. A node x is only
bypassable iff, given a tunable contraction parameter c, the following holds (Delling, 2009):

No. shortcut edges ≤ c · (degin(x) + degout(x)) (2.1)

During the contraction of nodes, redundant shortcut edges can be added. Delling (2009)
states that these edges are not required in order to keep the distances in the core correct,
and can therefore be removed. Figure 2.4 illustrates the process of a node and edge
reduction.

Figure 2.4: In this example, vertex 2 is being bypassed. The vertex and all of its incoming
and outgoing edges are removed. A shortcut edge can then be added between vertex 1
and 3, with length len(v1, v2) + len(v2, v3).

2.2.3 Query Optimisation

While the greatest speed-ups are achieved during the preprocessing, further improvements
can be made during the query phase. In the previous sections we referenced Dijkstra’s
(1959) algorithm or modified versions thereof for querying the preprocessed graph. Di-
jkstra’s algorithm takes a greedy approach to the shortest path problem, meaning “it

1Not to be confused with the shortcuts described in Chapter 1 for cyclists.

CHAPTER 2. BACKGROUND 10

repeatedly selects from the unselected vertices, vertex v nearest to source s and declares
the distance to be the actual shortest distance from s to v” (Reddy, 2013). A* search is
a technique which takes a similar approach to Dijkstra’s, however an additional heuristic
h(v) is calculated which provides an estimate on the distance from vertex v to a target t
(Goldberg and Harrelson, 2004). The heuristic can therefore guide the search towards t,
as opposed to evaluating every vertex.

Further improvements can be seen when bidirectional search is applied. This technique
executes a forwards search from the source s, and a backwards search from the target t.
The means both paths typically meet somewhere in the middle, requiring fewer vertices
to be expanded.

2.2.4 ALT

Fuchs (2012) states the ALT algorithm is a variant of A* which uses a set of landmark
vertices and triangle inequalities to compute a feasible potential function). During pre-
processing, the distance for every vertex to every landmark must be calculated. Given
the graph G = (V,E), the triangle inequality |x + y| ≤ |x| + |y| can be used to derive
dist(u, v) ≥ dist(l, v) − dist(l, u) and dist(u, v) ≥ dist(u, l) − dist(v, l) for any u, v, l ∈ V .
Fuchs (2012) further notes that we can then define the two potential functions π:

πl+t := dist(v, l)− dist(t, l) πl−t := dist(t, l)− dist(v, l)

Using the max of these potential functions will the return the lowest bound for dist(v, t).
The speed-up benefits for ALT depend greatly on the selection of landmark vertices
(Delling, 2009). The landmarks should be spread across the graph as much as possi-
ble. The maxCover (Goldberg and Harrelson, 2004) heuristic is one of the best-known
techniques to do this, however it will not be covered in detail in this report.

Delling (2009) states that ALT is easy adaptable to dynamic graphs. Edge weights can be
updated through the use of dynamic shortest path trees. Insertions and deletions can be
reduced to edge weight changes; deleting an edge can be considered as setting its weight
to infinity, while inserting an edge can be considered as setting its from infinity to a given
value.

However, calculating the shortest path from every vertex to every landmark yields high
memory consumption. Delling (2009) notes that 16 landmarks requires an additional
128 bytes for each vertex. Furthermore, the speed-ups can not compete with that of
contraction.

2.3 OpenStreetMap Data

OpenStreetMap is a project to produce a free editable map of the world, using data
provided and maintained by the community. The data contains information including
roads, area boundaries, trails and more. It is licensed under the Open Data Commons
Open Database License (ODbL), allowing it to be copied, distributed, transmitted and
adapted as long as OpenStreetMap and its contributors are credited (OpenStreetMap,
2017). The data will be used for the graph for the search, and for the generation of the

CHAPTER 2. BACKGROUND 11

map tile images, used to display the map.

The data is available to download via Geofabrik.de (2017), and can be downloaded by
continent, country or administrative subdivision. The data is available in OSM XML
format or OSM PBF (Protocol buffer Binary Format) format.

2.3.1 PBF Format

The PBF format is an alternative to the XML format, which is 30% smaller, about five
times faster to write, and six times faster to read (OpenStreetMap, 2017).

The data is encoded using the Google Protocol Buffer. Protocol Buffers are used to serialise
structured data; once a data structure is defined, it is simple to write and read data to
the structure using generated source code, which then compiles to low-level serialisation
code (Google Developers, 2017).

2.3.2 Elements

The OpenStreetMap data is comprised of elements categorised by nodes, ways, and rela-
tions. Each element can possess one or more tags, which each contain a key and a value.
A tag describes a specific feature of an element (OpenStreetMap, 2017).

Nodes

A node represents a point on the planet. Each node has at least an ID, and a pair of
coordinates, defined by latitude and longitude. A node represents a stand-alone feature,
such as a point on a road, a park bench, etc. While nodes usually have no tags, some
may possess tags such as highway=traffic_signals, which marks traffic signals (Open-
StreetMap, 2017).

Ways

A way represents a polyline, which is an ordered list of nodes. A way can be defined as
either a closed way, or an open way. An open way represents a linear feature, such as
a road or a river. A closed way represents a polygon, such as an area boundary, or a
building. Common tags for ways include highway=<type of road>, and oneway=true.
A way also has an ID, which can be referenced in a relation (OpenStreetMap, 2017).

Relations

A relation documents the relationship between two or more elements. A relation can have
different meanings, which is defined by its tags - typically the relation will have a type
tag. A relation contains an ordered list of nodes, ways or tags, which are known as the
members for the object. An example relation is a route, which lists the ways of a highway
(OpenStreetMap, 2017).

2.3.3 Map Tiles

Tiles are used for a graphical representation of the map data. The tiles can be generated
from OpenStreetMap data, using software packages such as Mapnik (2016), or can be
obtained by various tile servers, such as those provided by OpenStreetMap (2017). The

CHAPTER 2. BACKGROUND 12

tiles are usually 256×256 pixel bitmap images, which are arranged in a grid layout. Tiles
are produced at different zoom levels, described in the following subsection.

Slippy Tilenames

The naming of tiles for OpenStreetMap data follows a standard convention. The filenames
follow the format of /path/to/tiles/zoom/x/y.png

(a) A tile at zoom level 0 (b) A tile at zoom level 12

Figure 2.5: Tile examples for different zoom levels (OpenStreetMap, 2017)

The the x and y of the tile is derived from the zoom level. Tiles are typically generated
for zoom levels 0 through to 19. At each zoom level z, the number of tiles t is calculated
by (OpenStreetMap, 2017):

t = 2z · 2z (2.2)
So when z = 0, one tile will contain the whole planet, however when z = 19 more than
2.7× 1012 tiles are required to cover the planet.

The x and y of the tile for given coordinates in degrees (lon, lat) can be calculated as
follows (OpenStreetMap, 2017):

x = 2z · (lon+ 180)
360 (2.3)

y = 2z−1 ·
(

1−
ln(tan(lat · π

180) + sec(lat · π
180))

π

)
(2.4)

Alternatively, you can calculate the coordinates (lon, lat) for a given tile (x, y) using the
following equations (OpenStreetMap, 2017):

CHAPTER 2. BACKGROUND 13

lon = x

2z · 360− 180 (2.5)

lat = arctan
(

sinh
(
π − y

2z
))
· 180
π

(2.6)

It is worth noting that {x, y} ⊂ IR+, despite the fact that the tile images are named using
integers. The decimal part of the tile numbers are used for the precise coordinates on that
tile.

2.4 Other Data

While OpenStreetMap provides a comprehensive set of data, there are some elements
which are not included, which may considered important for the project.

2.4.1 Postcode Data

Postcode data would be useful when querying locations for the search. The Office Of
National Statistics (2015) provides the National Statistics Postcode Lookup dataset, which
lists 1.75mil postcodes for the United Kingdom. Each postcode is listed alongside useful
information for the project, including its respective coordinates, local authority name,
region, and country. The file is available in a variety of formats, including CSV, JSON,
and XML.

2.4.2 Elevation Data

Unfortunately, elevation data is very difficult to acquire. Ordnance Survey (2017) provides
the OS Terrain 50 dataset for free, however as suggested by the name, the elevation grid is
separated by 50 metre posts, so would not be hugely helpful in regard to cycling. Precise
data (5 metres) is available, but at considerable expense - typically £2,500+ for a one
year license (Ordnance Survey, 2017). Another option would be to use Google Maps APIs
(2017) to query elevation data at particular points, however this service has a 20,000
request limit per day, requires external API calls (which may be slow) and would require
the usage of an embedded Google Map in accordance to their terms of service.

Due to these issues, elevation data will not be used in the project, but could be included
as further work with greater funding.

CHAPTER 2. BACKGROUND 14

2.5 GPX Files

The GPS Exchange Format (GPX) is an XML file containing coordinate data. Tradition-
ally the GPX file format was designed for use for GPS devices, however it is now more
generally used for exchanging route information. As the project will not be providing
functionality for route following, the planner should be able to export to GPX so the
routes can be followed using GPS devices. Descriptions of the key types in the schema are
as follows (Topografix, n.d.):

Element Description
gpx The root element of the GPX file. The element must contain at-

tributes describing the version of the schema used, and the name/URL
of the software that produced the file.

metadata This element contains information about the route. Optional at-
tributes include author, description, copyright, timestamp and the
coordinate bounds.

wpt Each instance of this element represents a waypoint. A waypoint
represents an independent point of interest or feature on the map.

rte This element represents an ordered list of significant points for a route.
GPS devices will use each item in the list to calculate the bearing and
distance for the following point in the route, as the route is navigated.

trk This element represents an ordered list of points which describe a
path. Usually this data is collected from a GPS, after following a
route.

Table 2.2: A description of the GPX file schema

CHAPTER 3

Requirements and Specification

3.1 Project Scope

3.1.1 User Identification

The system will accommodate for cyclists with a range of experience who are looking to
plan journeys for commute, leisure or general travel. The system will assist users looking
to plan routes of any distance within the bounds of England. Inexperienced cyclists should
feel comforted with the ability to choose safer routes, while all users should benefit from
the ability to modify the map in order to add shortcuts, or avoid particular areas.

The system is not targeted towards professional and competitive cycling, as that area
involves keeping track of and analysing statistics of previous rides, which is more concerned
with route following as opposed to the planning.

3.1.2 Assumptions

• The user will be using a desktop operating system, running one of the following web
browsers: Google Chrome, Mozilla Firework, Internet Explorer 11, Microsoft Edge.

• The user is fairly computer-literate, and perhaps has experience with other online
mapping tools.

• The user has an internet connection, required to interact with the web application.

15

CHAPTER 3. REQUIREMENTS AND SPECIFICATION 16

3.2 Requirements

The research conducted on other solutions in Section 2.1 has provided some insight on
what functionality is currently available, what aspects work well, and how the drawbacks
of these solutions can be avoided. From the conclusions drawn from this research and
personal ideas, a set of requirements have been established for the application.

3.2.1 Functional Requirements

Here a set of requirements are listed in regard to what the system should do:

1. The system must allow users to register using a username, email and password.
2. The system must allow users to login using their username and password.
3. The system must allow users to log out.
4. The system must explain any erroneous or invalid user input.
5. The system must only show the map to logged in users.
6. The system must allow users to pan and zoom a map of England.

(a) Any objects drawn on top of the map must move in correspondence to this
panning and zooming (e.g. waypoints and paths).

7. The system must allow users to search by address in order to add waypoints.
8. The system must draw clearly the path between waypoints.
9. The system must show all waypoints on the map.

10. The system must allow users to move waypoint positions.
11. The system must allow users to remove waypoints.
12. Upon the movements or deletion of a given waypoint, the system must recalculate

the path(s) between the preceding and proceeding waypoints.
13. The system must allow routes to be loaded and saved to a user account.

(a) The system must allow current routes to be loaded, edited and then overwritten.
(b) The system must allow for routes to be shared with other users by providing a

unique URL.
14. The system must allow users to export their routes to a valid GPX file, which can

then be loaded onto GPS devices or apps.
15. The system must allow users to make modifications to the map.

(a) The system must allow users to add personal modifications, which can only be
used by them.

(b) The system must allow users to add public modifications, which can be used
by any user.
i. The system must allow users to rate public modifications, so users can then

filter modifications by rating.
(c) The system must allow users to modify the map by adding an edge between

two nodes, considered as a shortcut.
(d) The system must allow users to modify the map by adding a set of edges which

must be avoided by the search.
16. The system must allow users to choose to avoid primary roads.

CHAPTER 3. REQUIREMENTS AND SPECIFICATION 17

(a) The system must then follow secondary/tertiary roads until necessary to switch
to primary roads.

17. The system must allow users to prefer roads with cycle paths.
(a) The system must then follow cycle paths while they are available.

3.2.2 Non-Functional Requirements

1. The system must work on all major desktop web browsers.
2. The system must work on display sizes greater than 12 inches.
3. The system must return a search in less than 7 seconds for any two points.
4. The map panning and zooming must be responsive to user action.
5. The system must take measures to ensure user data is held securely.
6. The system should be able update the graph to accommodate for a modification in

less than 1 second.

3.3 Constraints

The biggest constraint to this project is the limited funding which restricts what hardware
and data is available. Due to amount of information in the map data, a system with high
specifications would be required to represent the entire world or even a continent, which is
why the solution will only cover the map of England. As stated in Section 2.4.2, elevation
data is also expensive to obtain, while it would be a valuable addition for the project.

As with many software projects, this solution is constrained by time. The system will
have ≈3 months of development time, so it is essential the project is managed well, and
the goals are prioritised.

CHAPTER 4

Design

4.1 System Design

In this section we explore how the system will be defined in terms of architecture, compo-
nents and interfaces, in order to satisfy the requirements outlined in the previous section.

4.1.1 Architecture

The system architecture will follow the client-server model. Due to the intensive memory
and processing requirements, it would be infeasible for the computation of the search to
be executed on client machines. Even if every client did have the required specifications,
the graph would need to be preprocessed on each client before the search could begin. For
this reason, any intense computation will be executed on the server based on user input,
and a response will be returned to the client.

As the preprocessing of a graph can take a long time, the system will make use of a
development and a production server. The development server will use a subgraph of
England, namely the West Midlands. This will allow for changes to be made and tested
quickly. On the completion of a feature and given the system is in a stable state, the code
can then be deployed onto the production server, which will use the full graph of England.

The production environment will be hosted using a virtual private server (VPS) provided
by OVH (2017). As the application will be extremely memory expensive, a VPS with 24GB
of allocated RAM has been chosen, which should be more than enough the represent the
graph of England.

MVC Pattern

The system will be developed using the model-view-controller pattern, which consists of:

• Model. The objects which will be used on the server. The server will model the
graph and map modifications.

• Controller. Used to update the models on the server. Upon user API requests,
methods will be executed on the server in order to manipulate the graph, execute
the search, etc.

18

CHAPTER 4. DESIGN 19

• View. Upon updating the model, the server will return data to the client. The
view will consist of a webpage comprised of HTML, CSS and JavaScript, which will
represent the data returned.

4.1.2 Database Design

The system will require a database to store both user inputted data, and the graph data.
While the search will use graph data stored in-memory, it will also be kept in a database
which will allow the use of spatial functions, and additional information to be stored about
the graph. Spatial functions are required for functionality such as finding the closest node
for a given geocode. While this could be implemented in the server programming the
spatial functions are extremely efficient with regard to the large dataset, so it would be
logical to utilise what is provided. Furthermore, we need to be as efficient as possible
with the resources allocated to the server container, so leveraging this workload onto the
database will increase what is available for modules such as the search.

The ER diagram below shows the structure of the database.

CHAPTER 4. DESIGN 20

4.2 Selection of Search Technique

In Section 2.2 various speed-up techniques were researched and we discussed the advan-
tages and drawbacks they possess. While considerable speed-up would be preferable, it is
also crucial to consider other factors such as hardware constraints and the time required
to preprocess the graph. The method we use must also allow for quick updates to the
graph as it is modified by the user.

While ALT seems interesting, providing decent query-times, and easy updates to the
graph. Unfortunately the memory requirements are too high, thus being too expensive for
the project.

Compared to the other reviewed methods of preprocessing it appears that contraction
techniques typically put the least strain on memory, while providing excellent speed-ups,
and will be used in the project.

At query-time, a bidirectional implementation of A* will be used. As discussed in Section
2.2, we can use the additional heuristic of A* to help guide the search towards the target,
and used bidirectionally should provide noticeable improvements.

4.3 Technologies

4.3.1 Web Server

The chosen language for the back-end of this project is Java; mainly due to personal
experience, and its object-oriented nature should help encourage good design patterns.
Apache Tomcat (2017) is a servlet container for Java EE (2014), “which implements the
Java Servlet, JavaServer pages, and Java WebSocket technologies”, and will be used to
run the web server.

In order to communicate with the front-end, an API is required. Jersey (2017) is a
framework which simplifies the development of RESTful web services. While it is possible
to develop an API purely through servlets, the framework simplifies the process greatly.

4.3.2 Database

A database management system (DBMS) will be required for the storage and retrieval of
data within the system. The two DBMSs which will be examined are PostgreSQL (2012)
and MySQL (2017). While I personally have more experience with MySQL, there are
other considerations to be made.

As the solution will be working with geographical data, it is wise to consider which DBMS
has the best support for spatial functions, especially given the vastness of the dataset.
MySQL 5.7 has native support for spatial functions; while for PostgreSQL the PostGIS
(2012) extension is available. At present, MySQL seems to be lacking some of the more
advanced features that PostGIS provides, such as aggregate functions for spatial data

CHAPTER 4. DESIGN 21

(BostonGIS, 2008). While it is unlikely these features will be used in the scope of this
project, they may be required for any future work. Furthermore, more community support
appears to be available for PostGIS; perhaps as it has been established for a longer time.
For these reasons, PostgreSQL with the PostGIS extension has been chosen as the DBMS
for this project.

4.3.3 Generating Map Tiles

In order to generate the map tiles, a series of software and libraries will be used. The
process will be conducted as described on Switch2osm.org (2013), however instead of
tiles being rendered dynamically i.e. as and when they are needed, the tiles will be pre-
rendered in effort to reduce the workload on the server. First, the PBF file of England
will be loaded into a PostgreSQL database with the PostGIS extension installed, using
the software package Osm2pgsql (2017). A style sheet for the map images can then
generated using OSM-Bright (Crosby, 2014). Finally, Mapnik (2016) can be used to read
the database and generate the tiles with the generated style sheet. Tiles will be generated
for zoom levels 5 through to 16, which should provide a sufficient amount of detail required
for route planning.

4.3.4 Web Map

A slippy map is the name given to web maps, which allow panning and zooming (Open-
StreetMap, 2017). External JavaScript libraries such as Leaflet (Agafonkin, 2017) and
Slippy Map On Canvas (2012) have been considered to display a slippy map; however, it
has been decided that the required functionality for this application is too bespoke and
requires a greater degree of flexibility, so using these libraries may create more work in
the long-run. Instead a slippy map will built from the ground up, taking inspiration from
these libraries which will provide greater freedom of control.

4.4 User Interface

Building an effective user interface (UI) is an important aspect of this project. As the
application will be open for public use, it is important that the interface is intuitive and
easy-to-use. The interface will consist primarily of a single-page, which is reactive to user
input.

The construction of the UI will follow Nielsen’s (1995) 10 usability heuristics. Here we list
each of the heuristics and how they will be addressed in the UI.

1. Visibility of system status
The UI should indicate to the user when server-side processing is being executed,
through the use of a “loading” animation.

2. Match between system and the real world
The UI should avoid using technical words. The functionality to a plan a route
should be presented in a logical order.

CHAPTER 4. DESIGN 22

3. User control and freedom
The UI should allow for the deletion and movement of any waypoints added.

4. Consistency and standards
The flow of the the route planning should be consistent. The users should be able
operate the application through moving down the page.

5. Error prevention
The UI should be carefully designed to limit potential errors. Controls should be
carefully selected so only valid input can be added.

6. Recognition rather than recall
The UI should be self-explanatory. Typically, any functionality that may be used in
the near-future should not be more than two clicks away.

7. Flexibility and efficiency of use
The UI should guide the user through the planning of a route. Accelerators – unseen
by the novice user – may often speed up the interaction for the expert user such that
the system can cater to both inexperienced and experienced users. Allow users to
tailor frequent actions.

8. Aesthetic and minimalist design
The majority of the screen should just be of the map, presenting the user with a
clear view of the route. Route planning should be executed through a sidebar, but
should not detract from the map.

9. Help users recognize, diagnose, and recover from errors
Any erroneous user input should return an error message explaining what the prob-
lem is, and how it can be solved.

10. Help and documentation
While the UI should be able to be used without documentation, help should be
provided for the more challenging aspects.

4.4.1 Frameworks

The use of icons can bring the advantages of being easily recognisable (Shneiderman, cited
in Gatsou, Politis and Zevgolis 2012) and improving memorability of functions (Siau, cited
in Gatsou, Politis and Zevgolis 2012). It is therefore wise to incorporate icons into the UI
to aid the navigation of the application. FontAwesome (Gandy, 2017) provides a library
of 675 clear and comprehensible icons and will be used in the development of the UI.

Material Design Lite (2017) is a framework containing templates, components, and controls
based on the design of Material (2017). The framework will be used primarily to improve
the aesthetics of the application and give it a more professional feel.

CHAPTER 4. DESIGN 23

4.4.2 Wireframe

A wireframe of the main application screen is provided below. The wireframe has been
created using the online tool myBalsamiq (2017). The wireframe has been annotated with
yellow callouts which are described below.

Figure 4.1: Map Image provided by OpenStreetMap (2017)

1. Upon entering an address, a new waypoint is added on the map and the sidebar
listing.

2. Users will be able to move a marker on the map to recalculate a path.

3. This should expand to reveal user shortcuts and avoids.

4. Zooming should be possible through mousewheel or clicking on the zoom buttons.

5. Clicking on a route in the menu should load the path on the map.

CHAPTER 5

Implementation

5.1 User Authentication and Validation

The system allows users to register and log in. This functionality is added so users can save
routes and map modifications to their account. The user can register using a username,
email and password. Once a user has logged in, a session is generated on the server, which
stores their user ID.

Figure 5.1: The slippy map in debug mode

Various measures have been taken in order to validate user input before it is inserted into
the database. All validation is done server-side, and any errors are reported back to the

24

CHAPTER 5. IMPLEMENTATION 25

user, as shown in Figure 5.1. Both the username and email must be unique, i.e. not exist
in the database. The email is validated against the RFC822 (2012) regular expression.
In order to encourage password security, the password has a minimum length of eight
characters.

5.2 Security

Despite not being a security-oriented project, it is important for any project to maintain
solid security, especially those dealing with user data. While a breach of data for this
project would not lead to any sensitive data being exposed, it is rather typical for users
to use the same credentials over a variety of websites, which could lead to a more sinister
compromise. This section details the security measures that have been taken, in response
to the attack vectors listed in the OWASP Top 10 (2013).

In response to SQL injection, prepared statements have been used. Any execution of SQL
statements is performed server side, so the PreparedStatement interface provided Java
EE (2014) is used to bind any parameters into the queries.

In response to session management and broken vulnerabilities, a few steps have been taken.
User passwords are hashed using a salt and SHA256, so they are stored as:

SHA256(salt+ password)

In turn, if the database were to be compromised, attackers could not run the hashes against
rainbow tables1 as the same message will generate a different hash.

In response to data exposure, the site uses an SSL certificate. This means that any data
transmitted is encrypted.

Finally to prevent XSS attempts, all untrusted data from user input is escaped before it
is displayed on the page. This measure has been implemented using the Jsoup library
(Hedley, 2016), and sanitises the input based on a given whitelist.

5.3 Slippy Map

The slippy map which has been implemented for this project uses a canvas object for the
rendering, and is manipulated using jQuery. Figure 5.2 shows the slippy map in debug
mode which may make it easier to visualise how it works.

The module uses event-driven programming. As the user interacts with the map, different
functionality is triggered. The basic idea is that a grid of 256×256px map tiles, generated
as per Section 4.3.3, is rendered onto the canvas. The map can be panned and zoomed,
using mouse events, which will then re-render the canvas with the required tiles.

The module essentially uses three different unit systems. In order to load the correct
tiles, the map tiles have to be tracked using the z/x/y system described in Section 2.3.3.

1Tables which contained precomputed hashes for a set of plaintext messages.

CHAPTER 5. IMPLEMENTATION 26

Figure 5.2: The slippy map in debug mode

We keep track of the x and y tile in the top left hand corner, and render a grid of tiles
based on the size of the viewport (canvas). A further two tile border is also pre-rendered,
to make panning more seamless. As the map is panned we increment/decrement an x
and y pixel offset based on direction. Once an offset is equal to or greater than the
map tile size we shift the x or y tile based on direction. As the map is zoomed the z
is incremented/decremented. An algorithm for how these tiles are rendered is shown in
Algorithm 1.

Algorithm 1 Tile Render
1: procedure LoadTiles
2: xTileCount← ceil(viewportWidth / tileSize)
3: yTileCount← ceil(viewportHeight / tileSize)
4: for i = −2 to (xT ileCount+ 2) do
5: x← i+mapXPos
6: xPixelPos← x× tileSize+ xOffset
7: for j = −2 to (yT ileCount+ 2) do
8: y← j +mapY Pos
9: yPixelPos← y × tileSize+ yOffset

10: if tile (x, y, zoom) is loaded then
11: draw tile (x, y) for new zoom at pixel (xPixelPos, yP ixelPos)
12: else
13: draw tile (x, y) for previous zoom at pixel (xPixelPos, yP ixelPos)

The map also needs to be able to convert any position to geocodes, which are used for
drawing paths, markers, etc. To do this we can use the conversion functions listed in
Section 2.3.3. We convert the tile number in the top-left corner of the viewport and the
bottom-right corner of the viewport using these functions, so we have the bounds for the
geocodes. Then if we are given a geocode, we can find the pixel position by calculating
where that geocode is in relation to the bounds. The pixel position can then be used to
draw the polylines and objects on the canvas.

CHAPTER 5. IMPLEMENTATION 27

On zooming in and out we draw the tiles from the previous zoom level but at an en-
larged/shrunk resolution until the new layer has loaded the images. The old tiles are
replaced by the new tiles at the correct resolution. This is done in effort to create a more
seamless transition between layers, rather than wiping the whole layer until the new tiles
are loaded.

5.4 API

The client communicates with the server using through an API. As a user interacts with
the interface AJAX requests are made to the server returning a JSON response. When a
user makes a request to the API, the server check their session in order to validate that
they are logged in and the request is valid. If the request is not valid, the API returns a
HTTP 403 Forbidden status. If the request is valid, the user ID variable from the session
is typically used to retrieve data from the database for that user.

Requests typically containing data are made to the API through jQuery functions, and
once the response is received a callback function is triggered which will use the data from
the response. A full list and explanation of the API endpoints is given in Appendix C.

CHAPTER 5. IMPLEMENTATION 28

5.5 JSON Data Representation

In order for the view to represent data returned from the server, suitable data structures
are required. We can then iterate through these structures, in order to draw them onto
the canvas.

5.5.1 Waypoints and Routes

A route is essentially an array of paths. A waypoint is an image which shows the start
and/or end of a path. They are stored in separate data structures as a waypoint can mark
the end of one path and the beginning of another, and each path has two waypoints, so
combining them into one structure would likely lead to redundant data.

1 // Array with paths
2 [
3 // Single path
4 {
5 id: 1,
6 // Array with path points
7 path: [
8 // Single point
9 {

10 lat: 90,
11 lon: -90
12 },
13 ..
14]
15 },
16 ..
17]

1 // Array with waypoints
2 [
3 // Single waypoint
4 {
5 id: 1,
6 // Waypoint image properties
7 height : 80,
8 width: 40,
9 img: Image ()

10 // Waypoint geocode
11 location : {
12 lat: 90,
13 lon: -90
14 },
15 // Waypoint pixel position
16 pixelLocation : {
17 top: 100,
18 left: 100,
19 bottom : 100,
20 right: 100
21 }
22 },
23 ..
24]

A path is simply an ordered list of geocodes, which means we can draw a polyline by
converting each geocode to its pixel position (described in Section 5.3). So we can iterate
through the paths and draw each one.

A waypoint shows a different image, of different size depending on which paths it lies on.
The first and final waypoints in the list show a larger flag icon to denote the start and end
of the route, while intermediate waypoints show a smaller number icon. We must store
the pixel position because the image is loaded asynchronously. This means we build the

CHAPTER 5. IMPLEMENTATION 29

placeholder for an image, and continue to execute other tasks, such as drawing the path.
Once the image has loaded, we can simply place it in the stored placeholder.

5.5.2 Shortcuts and Avoids

As described in Section 5.7, shortcuts are comprised of two nodes, while avoids are a set
of edges.

1 // Array with shortcuts
2 [
3 // Single shortcut
4 {
5 id: 1,
6 name: "name",
7 description : "desc",
8 public : true,
9 head: {

10 lat: 90,
11 lon: -90
12 },
13 tail: {
14 lat: 90,
15 lon: -90
16 }
17 },
18 ..
19]

1 // Array with avoids
2 [
3 // Single avoid
4 {
5 id: 1,
6 name: "name",
7 description : "desc",
8 public : true,
9 // Array of avoid edges

10 edges: [
11 {
12 head: {id, lat, lon},
13 tail: {id, lat, lon},
14 inters : [
15 {id, lat, lon},
16 ..
17]
18 },
19 ..
20]
21 },
22 ..
23]

For each shortcut we can simply draw a single line from the geocode listed in the tail, to
the geocode listed in the head. However, for each avoid we must iterate through each of
its edges, beginning at the tail and draw a line to each intermediate and then finally to
the head.

CHAPTER 5. IMPLEMENTATION 30

5.6 Route Finding

Due to hardware and software constraints and in attempt to build an optimal user expe-
rience, it was important to make the search as efficient as possible. Below the details and
techniques used to implement the search are explained.

5.6.1 Constructing and Preprocessing the Graph

The process for which the graph is built also contracts the graph, in order to make the
search faster. It takes about 20 seconds to process the map of the West Midlands on the
development server, and about 5 minutes to process the map of England on the production
server. Once the graph has been built and preprocessed on server start-up, it is stored as
a servlet context variable so that it is kept in memory.

In order to parse the PBF file, the library OSM-Binary (Crosby, 2014) was used. This
library parses all nodes in order of ID, followed by ways. The data parsed from this file is
primitive, so a new graph data structure was required. The graph structure contains two
primary data types, defined by a list of Nodes and a list of Edges. A Node contains an ID,
geocode and a list of incoming and outgoing Edges. An Edge contains a weight, a head
and tail Node, a set of component Nodes and various flags to note whether it is one-way,
a shortcut, etc.

The PBF file is read twice. Once to check which nodes should be contracted, and then
another time to build the contracted graph. On the first iteration we build a list of Nodes
while reading the PBF nodes. While parsing the ways, instead of adding edges we simply
count how many times each node is referenced. Nodes with more than one reference will
be a junction so will be added to the core, while nodes with one reference is simply a
node along a way so can be added to the component. Now we know which nodes belong
to the core and component, we can parse the ways again to add edges. For each way,
we begin a new edge and for each node along the way we check if the node is lies on the
core. If the node is a not a core node, it is added as an “intermediate” for the edge. If the
node is a core node, then the head of the edge is set to that node, and a new edge begins
from that node. The weight of the edge is the cumulative haversine2 distance between all
component nodes. The process continues for the rest of the way. A basic representation
of the procedure to parse a way is shown in Algorithm 2.

Because the ways give node references by ID when adding edges, an efficient method to
find the Node in the list is required as we have no information about index. One proposed
solution was to store the Nodes in a HashMap with the ID as the key, rather than a list.
This would mean a retrieval of the Node could be done in O(1) time, however the memory
overhead was simply too large. Instead, the Nodes were stored in an ArrayList ordered by
ID. We could then execute a binary search using the ID as the comparator field, yielding
a worst-case time complexity O(logn), with the ArrayList consuming considerably less
memory.

2A formula to calculate the great-circle distance between two points on a sphere.

CHAPTER 5. IMPLEMENTATION 31

Algorithm 2 Parsing a given way
1: procedure ParseWay
2: for i = 0 to wayNodes.size do
3: if wayNodes[i].isCore then
4: intermediates← []
5: fromNode← wayNodes[i]
6: prev = fromNode
7: weight = 0
8: for j = i+ 1 to wayNodes.size do
9: if wayNodes[j].isCore then

10: toNode = wayNodes[j]
11: weight+ = haversine(prev, toNode)
12: addEdge(fromNode, toNode, weight, intermediates)
13: if not way.isOneway then
14: addEdge(toNode, fromNode, weight, intermediates)
15: break
16: else
17: intermediateNode = wayNodes[j]
18: weight+ = haversine(prev, intermediateNode)
19: prev = intermediateNode
20: intermediates.push(intermediateNode)

5.6.2 Querying

As selected in Section 4.2, the querying uses an implementation of bi-directional A* search.
A start node and an target node is required in order to begin the search. For two given
geocodes we can use a PostGIS spatial distance query (see Section 4.3.2) to obtain the
closest core nodes. This typically takes about 500ms for each point, so about a second is
added to the search, no matter how long the path is. Now we have the start and target
node, we can begin a search on the core.

The search uses the haversine distance, to calculate distances for the the heuristic, so that
the curvature of the Earth is accounted for. The search uses separate instances of data
types for the forwards and backwards direction. The open sets are implemented using a
PriorityQueue, which orders nodes by the value of f(n) in ascending order. The g(n)
value of each node is stored in a HashMap<Long, Double>. The key is of type Long because
it stores the Node ID, with the value given as a Double. The use of a HashMap means that
during the search we can retrieve the value of g(n) in O(1) time for a given node.

5.7 Map Modifications

Map modifications allow users to add data to the graph, and can be categorised by short-
cuts and avoids. While how each of these types are used in the search does not differ
greatly, the way they are added and removed from the graph does. Shortcuts are essen-
tially a pair of Nodes, while avoids are a set of Edges.

CHAPTER 5. IMPLEMENTATION 32

All modifications have a name, description and an associated user ID. Each modification
is either personal which means they can only be used by the user who created it, or public
so they can be used by anyone. The name, description and whether the modification is
public or personal can be edited after insertion.

Before starting a search, a user can decide whether to use public and/or personal modifi-
cations of each type. If a user chooses not to use a modification of a particular type, the
search will ignore Edges with the respective flag and the modifications will not be shown
on the UI.

5.7.1 Shortcuts

Shortcuts involve the insertion of an Edge between two Nodes. It is important for users to
be able to add shortcuts along a road rather than just at junctions, so the functionality to
add shortcuts between core and component nodes is required. An example of a shortcut
in use can been seen in Figure 5.3.

Figure 5.3: Example usage of a shortcut to cycle through a park. Shortcuts are represented
with a green polyline.

To add a shortcut, a user can select any two points on the map and for each of the points,
the server finds the closest core or component Node using a PostGIS spatial distance query.
If a Node lies on the core, an edge can simply be added to it. However, if a Node is part
of the component we must make it part of the core, and reassign the edges for the head
and tail for the edge it sits on. A new Edge can then be introduced between the Nodes.
The shortcut Edge is assigned the shortcut flag and a shortcut user variable, making it
possible to distinguish which Edges are shortcuts during the search. Figure 5.4 shows how
a shortcut is added between a core and component node.

Figure 5.4: In this example, we are adding a shortcut between node 3 and 5. Any the
smaller nodes are part of the component, while the larger nodes belong to the core. As
node 3 is made part of the core, the edge between 1 and 4 is removed, introducing two
new edges: 1 ↔ 3 and 3 ↔ 4. A new shortcut edge can then be added between 3 and 5.

CHAPTER 5. IMPLEMENTATION 33

5.7.2 Avoids

Avoids involve adding a flag to a current set of Edges which will then be ignored by the
search. Because avoids are comprised of edges, we can ignore components nodes as the
edges only lie between nodes on the core.

To begin adding an avoid the user first selects a road on the map, sending the geocode of
the click to the server. The server then finds the two closest neighbouring points. Once the
initial edge has been added, the user can then select more roads adding edges in a similar
manner. The only difference is that now it finds the closest node out of the subgraph of
selected edges, and the nearest neighbour of that node to the point. An example of an
avoid in use can be seen in Figure 5.7

Figure 5.5: Example avoidance of a busy roundabout. Avoids are represented with a set
of red polylines.

5.7.3 Loading and Publishing Modifications

It is important that only necessary data is kept in the graph so that search times are kept
to a minimum. Unnecessary data refers to Edges which would be held in the graph, but
no one could use them. The search algorithm would still need to check these Edges to
see if they could be explored, even though we know they never could be. If the project
were to be successful, given a user base of around 50,000 users each with 5 shortcuts, an
additional 250,000 edges would be kept in the graph which would have a noticeable effect
on the search. On the other hand, we can not temporarily insert modifications during
search-time as the process of querying the database for the user modifications, inserting
them into the graph, etc. would be even more detrimental to the speed of the search.

CHAPTER 5. IMPLEMENTATION 34

The way personal and public modifications are inserted and held in the graph differs.
Public modifications are loaded into the graph during server start-up, and then kept in
the graph. This is because every user is allowed to use them, so the data should be
readily available. On the other hand, only one user can use personal modifications so
it would not make sense to always keep these in the graph. One idea to combat this
was to load a copy of the graph when a user logs in, with their personal modifications
inserted. However, the graph simply requires too much memory to store a copy for every
concurrent user. Instead, when a user logs in their modifications are loaded into the main
graph, and removed when they log out. While not all logged in users are able to use these
modifications, it is certainly a much smaller subset of redundant data than if all personal
modification were always kept in the graph.

5.8 Search Constraints

Search constraints allow the user to make more general adjustments to the search. The
basic idea is that a penalty or reward is given to different road types, which means the
search will favour certain roads but will still consider the other types if necessary. This kind
of soft constraint has been used over a hard constraint for a couple of reasons. First, the
map of England is not fully connected without using primary roads or higher (see Figure
5.6), so completely ignoring these road types could make search impossible. Another
reason is to prevent the search taking extremely long detours for the sake of avoiding a
short stretch of road.

Figure 5.6: In this example, it would be impossible to navigate from Carlisle to Longtown
without using an A roads or motorway for at least a short distance.

CHAPTER 5. IMPLEMENTATION 35

The reward or penalty is decided for an Edge when the ways are being parsed on server
start-up. The algorithm checks the tags for each way, so the road type can be determined.
Each road type has constants assigned to it, which can used as coefficients for the length
function during the search. By multiplying the length function instead of adding to it,
the penalty or reward is relative to the length of the road. Adding constants to the length
would affect short roads too much, and longer roads too little.

The two options given to users are “avoid main roads” and “prefer cycle-ways”. For each
way, we check the value of the highway key. The different values for the tag have different
constants; the larger, faster road types such as primary roads have higher constant values.
We also check whether the way has the cycleway tag, which indicates a way has a cycle
path. If the tag exists, then another constant is added which is ≤ 1.0, hence acting as a
reward. When the constants have been chosen we can add them to the Edges of that way.
It is worth noting that the two are not mutually exclusive; a road with a penalty can also
have a reward for being a cycleway. If the user does not wish to use these options, they
can be deselected and the coefficient(s) will not be applied to the length function.

(a) (b)

Figure 5.7: The same route when using main roads (a), and avoiding main roads (b).

CHAPTER 6

Testing

6.1 Structural Testing

Structural testing, also known as white-box testing, follows a “detailed investigation of
internal logic and structure of the code” (Ehmer and Khan, 2012).

6.1.1 Unit Testing

The architecture of this project makes unit testing very difficult. The server for the
application takes user input as the request, and typically returns JSON output. However,
valid responses are only provided when there is an active session generated through the
login procedure, which is difficult to mock through testing suites. JWebUnit (Dashorst and
Wright, 2015) is a testing framework specifically for web applications, which can simulate
browser behaviour to navigate through a website and set assertions. The framework has
been used to validate user authentication, as shown in Figure 6.1, however once the user
is authenticated testing again becomes difficult as a lot of the functionality lies within
manipulating the canvas object.

Figure 6.1: Unit tests for user authentication

36

CHAPTER 6. TESTING 37

6.2 Functional Testing

Functional testing, also known as black-box testing, assumes no knowledge of the internal
workings of the system and investigates the functionality which is available to the user
(Ehmer and Khan, 2012).

Test Description Expected Result Actual Result
1 Logged out users should

always be presented with
login screen.

Attempted access to
index.jsp with no valid
session should redirect
to login.jsp

Pass.

2 Logged in users should
always be presented with
map.

On site load, given an ac-
tive session, the map is
shown.

Pass.

3 Map should pan when
dragged by the user.

While mousedown, the
map should move in the
direction of mousemove

Pass.

4 Map should zoom in and
out on mouse wheel.

Mouse wheel up should
zoom in on the map,
mouse wheel down
should zoom out.

Pass. The function-
ality works, however
could be improved by
reduced sensitivity to
mousewheel.

5 Users should be able to
search by postcode.

Upon entering a post-
code in the format
A9AA 9AA, a full
address should be re-
turned, and a new
waypoint added.

Pass. The search re-
turns a full address
for correctly formatted
postcodes and adds a
new waypoint.

Upon entering a post-
code in the format
A9AA9AA, a full
address should be re-
turned, and a new
waypoint added.

Fail. The search returns
the error message Unable
to parse your search.

Upon entering an invalid
postcode, an error mes-
sage should be returned.

Pass. The search re-
turns the error message
Unable to parse your
search.

6 Users should be able to
search by geocode.

Upon entering a geocode
in the format lat, lon,
a full address should be
returned, and a way-
point added.

Pass. The search re-
turns a full address
for correctly formatted
postcodes and adds a
waypoint.

CHAPTER 6. TESTING 38

Upon entering an invalid
geocode, an error mes-
sage should be returned.

Pass. The search re-
turns the error message
Unable to parse your
search.

7 Users should be able to
move waypoints.

While mousedown on a
given waypoint, the way-
point should move, on
mouse up it is dropped
and a new address is
found.

Pass.

8 A clear should be drawn
between two successive
waypoints.

A blue path should be
draw between every suc-
cessive waypoint.

Pass.

9 Users should be able to
delete waypoints.

Upon deletion of a way-
point it should be re-
moved from the sidebar
listing, and a new path
should be drawn be-
tween the preceding and
proceeding waypoints.

Pass.

10 Users should be able to
adjust search to avoid
main roads.

With the option se-
lected, any new paths
or movement of cur-
rent waypoints returns a
new path avoiding main
roads.

Pass.

11 Users should be able to
adjust search to prefer
cycleways.

With the option se-
lected, any new paths
or movement of cur-
rent waypoints returns a
new path preferring cy-
cleways.

Pass.

12 Users should be able to
create shortcuts.

Upon clicking “Set
Points”, a user clicks
once to begin the short-
cut and again to end the
shortcut. Both points
on shortcut should snap
to the nearest node.

Pass.

Users should be able to
reset the points of their
shortcut by re-clicking
“Set Points”

Pass.

Users should be able set
the name and descrip-
tion for their shortcut
by clicking on the text
fields.

Pass.

CHAPTER 6. TESTING 39

Users should be able to
edit the name and de-
scription of previously
added shortcuts.

Pass.

13 Users should be able to
create avoids.

Upon clicking “Set
Points”, a user can click
on a road and the edge
will be added to the
avoid. Users should
then be able to click on
neighbouring edges to
add them.

Fail. While this works
for the most part, there
are times where click-
ing on a road will result
in the wrong road being
added to the avoid.

Users should be able to
reset the points of their
avoid by re-clicking “Set
Points”

Pass.

Users should be able
set the name and de-
scription for their avoid
by clicking on the text
fields.

Pass.

Users should be able to
edit the name and de-
scription of previously
added avoids.

Pass.

14 Users should be able to
toggle the use of public
and/or personal modifi-
cations.

Only selected modifica-
tions should be drawn on
the map, and used in the
search.

Pass.

15 Users should be able to
save routes.

Upon entering a name
for the route the and
clicking the save but-
ton, the route should
be saved and the user
presented with a share
URL.

Pass.

16 Users should be able to
view their saved routes.

Upon clicking “My
Routes” the list of their
routes should be shown.

Pass.

17 Users should be able to
load saved routes.

Upon clicking a route
in the “My Routes” the
route should be loaded
with the route data,
name and share URL.

Fail. While the route is
shown, the waypoint im-
ages are incorrect and is
missing the route name
and share URL.

CHAPTER 6. TESTING 40

18 Users should be able to
load a shared route.

Upon loading the share
URL the route data and
name should be loaded.

Fail. While the route is
shown, the waypoint im-
ages are incorrect and is
missing the route name.

19 Users should be able to
export routes to a GPX
file.

Upon entering a route
name and clicking the
“Export GPX” file for a
new route, a valid GPX
file should automatically
download.

Pass. The GPX file has
been downloaded and
tested using GPX Visu-
alizer (Schneider, 2016).

Upon entering a route
name and clicking the
“Export GPX” file for a
loaded or shared route, a
valid GPX file should au-
tomatically download.

Fail. The page redirects
to a “404 Not Found” er-
ror page. This is due to
relative urls being used
on the button, so the
/download path is ap-
pended to /share

20 Users should be able to
log out.

Upon clicking “Log out”
the user will be redi-
rected to login.jsp.

Pass.

CHAPTER 7

Project Management

7.1 Changes to Original Proposal

The proposed project was to include a web application for route-planning and a mobile
application route-following. It was soon decided that implementing both of this systems
would simply be too much work for the given time constraints. Instead of trying to cover
both systems to a poor standard, a more focused approach was taken for the planning
aspect.

7.2 Schedule

Time-management was crucial for the success of the project, so it was important that
milestones and their expected delivery dates were established. Appendix D.1 shows a
Gantt chart for the project.

7.3 Weekly Meetings

During the course of this project, weekly meetings were held with my project supervi-
sor, Alan Sexton. In these meetings, we discussed the progress of the given week, any
outstanding issues, and work to be finished by the following week. The meetings were
important to ensure goals were achieved and provided guidance for any problems which
were encountered.

7.4 Git Version Control

Git version control (Torvalds, 2005) allows the tracking of changes for files within a system,
so that they can be recalled at a later date if required. The use of git in this project meant
that the files were backed-up, and if any severe software problems were encountered a
previous version was available.

41

CHAPTER 8

Evaluation

In this chapter, the implemented solution is evaluated. The search performance is evalu-
ated and compared against other solutions. A user feedback study has also been conducted,
to grasp an understanding of how system performs overall - mainly in terms of usability.

8.1 Search Evaluation

The search used for the project has been tested against the solutions reviewed in Section
2.1. As per that section, the routes were tested using those listed in Appendix B.1. It is
difficult to get completely fair results, as we are unsure what hardware the other solutions
are running and how long the search takes with regard to the overall response time. When
testing my search, I can output exactly how long it takes, whereas while testing the
other solutions, it is more of an approximation. It is also worth noting that CycleStreets
calculates three routes during the planning, hence increasing search-time. Therefore, these
results should be used to gain a general idea of the search times, but should not be given
too much consideration.

Route Ref. This Solution CycleStreets MapMyRide PlotARoute
A 59ms ≈3s < 1s < 1s
B 279ms ≈13s < 1s ≈3s
C 3461ms N/A < 1s ≈8s

Table 8.2: Comparative search-time experiments between solutions.

The results show that the speed of the search is comparable to that of the current solutions.
Clearly the search would have to be improved if it were to match the speed of MapMyRide,
however it still performs to a good standard. The results seem to be growing exponen-
tially with distance, which is understandable because as distance grows, more nodes are
expanded which do not lie on the “shortest” path. With that in mind, if the data were
to be expanded to cover a greater region, such as the entire planet, the search method
may need to be revised to accommodate for even longer distances. However, complete
cross-country bicycle routes are unlikely, and cross-continent routes even more so.

Of course speed is not the only metric when considering the performance of a search. The
quality of the route with regard to cyclists is likely a more important factor, presuming

42

CHAPTER 8. EVALUATION 43

the search-speed is practical. If we recall back to Section 2.1, both MapMyRide and
PlotARoute favoured the canal for route A. Figure 8.1 shows the route produced by this
solution with the options to avoid main roads and prefer cycleways enabled.

Figure 8.1: Route A planned with the implemented solution.

The route does take a more direct route, however the route still follows side-streets so
some traffic would be present. This was perhaps an oversight during the design of the
system, and the addition of another parameter to prefer canals would provide the user
with routes of minimal traffic.

Routes B and C are handled well. When the “avoid main routes parameter” is enabled
the planned routes follow countryside paths for the vast majority of the way, while still
taking a relatively direct route. Problems may occur with the introduction of elevation
data as these roads will likely contain more hills, which may not be desirable. With the
“prefer cycleways” option enabled the routes similarly follow countryside roads between
cities, however upon approaching cities the path follows roads with cycle-paths alongside
them, as expected.

8.2 User Evaluation

A user feedback study has been conducted via a questionnaire. The study mainly addresses
usability of the system as these issues can be difficult to grasp on a system you have built
yourself. The study asked users to complete tasks on the application, and then questioned
them on their user experience. The user is also provided with the option to leave additional
comments at the end of the questionnaire.

As stated in Section 3.1.1, the system should accommodate for cyclists of varying experi-
ence, so the questionnaire was distributed to people who were known to cycle regularly,
and others who rarely do. Unfortunately only 11 volunteers were found, so while some
useful observations can be made, more respondents would lead to greater confidence in
the conclusions drawn.

CHAPTER 8. EVALUATION 44

8.2.1 Discussion of Results

The results provided in Appendix E aid the understanding of the strengths and deficiencies
of the usability of the system.

The majority of participants found the creation of routes straight forward. Multiple com-
ments mentioned that searching for an address was limited, and requested the ability
to search by other fields, such as town. This feature could have certainly been imple-
mented if time permitted, but perhaps it should have been prioritised during the project
management.

Most participants found that the route was delivered in sufficient time. However, the
length of the route that users tested is unclear. This is a drawback in the design of the
questionnaire, and we should have perhaps provided a longer test case to see if the users
were still satisfied.

The results show that the average comfortability score for the default route is 3.4, while
the modified search scores 4.0. It would therefore be wise the make the modified search
the default, and users would have to disable the search constraints.

It appears that the participants in general found the insertion of shortcuts easier than
avoids. It was noted in Functional Test 13 that the interface for adding avoids is a known
issue, and upon the continuation of development, the fixing of this bug would be of high
priority.

To conclude, the conducted user evaluation has helped to identify some outstanding issues,
and reconsider the severity of others. On the other hand, we are more aware of what works
well in the system.

CHAPTER 9

Discussion

9.1 Summary of Achievements

Overall the solution has been a success. The search speeds are comparable to those de-
livered by current leading solutions, and in some cases superior. The quality of routes
provided are generally of high quality, but they could be improved further through addi-
tional search constraints such as guidance towards canals.

The ability to modify specific areas of the map is a novel feature which has not been
encountered in the solutions reviewed in this report, or any other solutions which have
been found. While this functionality has a lot of potential, the biggest drawback is that
the modifications have to be added manually and thus, typically requires prior knowledge
of the route. In aim to combat this, the system allows the use of public modifications,
which in turn should prove more helpful as the database of users grows.

9.2 Further Work

The project has a lot of capacity to grow, and many ideas have been formed for how it
could do so. I would like to continue working on this project, extending its functionality
and realising its full potential.

The first area of development would be to introduce a route-following mobile application,
and doing so would improve the work of the current solution, primarily in terms of map
modifications. The automatic insertion of shortcuts could be achieved if a user takes a
shortcut which is not currently represented in the system. It would be difficult to add this
functionality for avoids, unless users consistently avoid a set of roads when they appear on
routes. Users could also benefit by manually adding shortcuts and avoids as they appear
while following the route.

Another area of development could be the expansion of the graph to cover more countries.
This would require greater hardware in order to store the graph, and perhaps further
contraction to speed up the search. While the search handles cross-country routes fairly
well, it would most likely take a long time to calculate a cross-continent route, however it
is highly unlikely that users would plan routes of that size.

With the introduction of elevation data, more functionality could be achieved with regard
to the search constraints. Users could choose to take steeper or more levelled routes.

45

CHAPTER 10

Conclusion

In conclusion, the web application allows users to plan routes over England and efforts
have been made to focus the route planning for bicycles. The user can either modify the
search heuristic to plan routes based on road type, or can modify the map to add shortcuts
which are not represented in the map data or avoid specific areas.

Overall, I have enjoyed working on this project. The development of this software has
taught me an array of skills, while improving others. The project introduced me to new
challenges, in both the engineering and development of the software. I look forward to
continuing work on this project to see what can come of it.

46

Bibliography

[1] Agafonkin, V. (2017). Leaflet — an open-source JavaScript library for interactive
maps. [online] Leafletjs. Available at: http://leafletjs.com/.

[2] Apache Tomcat. (2017). Apache Software Foundation.

[3] BostonGIS (2008). Boston GIS: Geographic Information Systems Web Mapping
OpenGIS and open source Solutions. [online] Available at:
http://www.bostongis.com.

[4] Crosby, S. (2014). OSM-binary. [online] GitHub. Available at:
https://github.com/scrosby/OSM-binary.

[5] Cyclestreets. (2017). CycleStreets: UK-wide Cycle Journey Planner and Photomap:
Cycle journey planner. [online] Available at: https://www.cyclestreets.net/.

[6] Dashorst, M. and Wright, J. (2015). JWebUnit. [online] JWebUnit. Available at:
https://jwebunit.github.io/jwebunit/.

[7] Delling, D. (2009). Engineering and Augmenting Route Planning Algorithms. Ph.D.
Karlsruhe Institute of Technology.

[8] Department of Transport, (2014). British Social Attitudes Survey 2014: Public
attitudes towards transport. [online] Available at:
https://www.gov.uk/government/uploads/system/uploads/attachment_data/
file/481877/british-social-attitudes-survey-2014.pdf.

[9] Dijkstra, E. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1), pp.269-271.

[10] Ehmer, M. and Khan, F. (2012). A Comparative Study of White Box, Black Box
and Grey Box Testing Techniques. International Journal of Advanced Computer
Science and Applications, 3(6).

[11] Ex-parrot.com. (2012). RFC822. [online] Available at:
http://www.ex-parrot.com/pdw/Mail-RFC822-Address.html.

[12] Fuchs, F. (2010). On Preprocessing the ALT-Algorithm. Ph.D. Karlsruhe Institue of
Technology. Gandy, D. (2017). Font Awesome, the iconic font and CSS toolkit.
[online] Fontawesome.io. Available at: http://fontawesome.io/.

[13] Gatsou, C., Politis, A. and Zevgolis, D. (2012). The Importance of Mobile Interface
Icons on User Interaction. International Journal of Computer Science and
Applications, 9(3), pp.92 – 107.

47

BIBLIOGRAPHY 48

[14] Geofabrik.de. (2017). GEOFABRIK. [online] Available at:
https://www.geofabrik.de/data/download.html.

[15] Goldberg, A. and Harrelson, C. (2004). Computing the Shortest Path: A* Meets
Graph Theory. Redmond, WA.

[16] Google Developers. (2017). Protocol Buffers | Google Developers. [online] Available
at: https://developers.google.com/protocol-buffers/.

[17] Google Maps APIs. (2017). Google Maps APIs | Google Developers. [online]
Available at: https://developers.google.com/maps/documentation/

[18] Gov.uk. (2015). The Highway Code - Guidance - GOV.UK. [online] Available at:
https://www.gov.uk/guidance/the-highway-code.

[19] Hedley, J. (2016). Jsoup.

[20] Java EE. (2014). Oracle.

[21] Jersey. (2017). Oracle.

[22] jquery.org. (2017). jQuery. [online] Jquery.com. Available at: https://jquery.com/.

[23] Lauther, U. (2004). An Extremely Fast, Exact Algorithm for Finding Shortest
Paths in Static Networks with Geographical Background. Geoinformation und
Mobilität - von der Forschung zur praktischen Anwendung, 22, pages 219–230.

[24] Mapmyride.com. (2017). MapMyRide. [online] Available at:
http://www.mapmyride.com [Accessed 28 Mar. 2017].

[25] Mapnik. (2016). Mapnik.org - the core of geospatial visualization & processing.
[online] Available at: http://mapnik.org/.

[26] Material Design. (2017). Material Design. [online]
Availableat:https://material.io.

[27] Material Design Lite. (2017). Material Design Lite. [online] Available at:
https://getmdl.io.

[28] Mybalsamiq.com. (2017). Painless Remote UX | myBalsamiq. [online] Available at:
https://www.mybalsamiq.com/.

[29] MySQL. (2017). Oracle.

[30] Nielsen, J. (1995). 10 Heuristics for User Interface Design. [online] Nngroup.com.
Available at: https://www.nngroup.com/articles/ten-usability-heuristics/.

[31] Office Of National Statistics. (2015). National Statistics Postcode Lookup UK | Open
Data Portal. [online] Available at: https://opendata.camden.gov.uk/Maps/
National-Statistics-Postcode-Lookup-UK/tr8t-gqz7.

[32] OpenStreetMap. (2017). OpenStreetMap. [online] Available at:
https://www.openstreetmap.org/.

BIBLIOGRAPHY 49

[33] Osm2pgsql. (2017). GitHub. [online] Available at:
https://github.com/openstreetmap/osm2pgsql.

[34] OVH. (2017). Web hosting, cloud computing and dedicated servers - OVH. [online]
Available at: https://www.ovh.co.uk/.

[35] OWASP Top 10. (2013). 1st ed. OWASP Foundation.

[36] PlotARoute. (2017). plotaroute.com - Walking, Running, Cycle Route Planner.
[online] Available at: https://www.plotaroute.com.

[37] PostGIS. (2012). OSGeo.

[38] PostgreSQL. (2012). The PostgreSQL Global Development Group.

[39] Reddy, H. (2013). PATH FINDING - Dijkstra’s and A* Algorithm’s. Available at:
http://cs.indstate.edu/hgopireddy/algor.pdf.

[40] Schneider, A. (2016). GPS Visualizer. [online] Gpsvisualizer.com. Available at:
http://www.gpsvisualizer.com.

[41] Schultes, D. (2008). Route Planning in Road Networks. Ph.D. Karlsruhe Institute of
Technology.

[42] Slippy Map On Canvas. (2012). GitHub. [online] Available at:
https://github.com/dfacts/Slippy-Map-On-Canvas.

[43] Switch2osm.org. (2013). Manually building a tile server (14.04) | switch2osm.
[online] Available at:
https://switch2osm.org/serving-tiles/manually-building-a-tile-server-14-04/.

[44] Torvalds, L. (2005). Git.

[45] Topografix. (n.d.). GPX: the GPS Exchange Format. [online] Available at:
http://www.topografix.com/gpx.asp.

Appendices

50

CHAPTER A

Project Information

A.1 Directory Tree

/
install
report
test
src

context
database
geo
pbf
properties
rest

avoids
routing
shortcuts
util

search
graph
servlets
util

user
util

util
target
WebContent

css
img
include
js

tiler
META-INF
user
WEB-INF

Install. Provides a full installation website and the re-
quired files to install the system.
Report. The root directory for this report.
Test. Unit tests for the project.
Src. The source files for the Java back end.
• Context. Classes to manage context variables

on server start-up/shutdown and session initialisa-
tion/destruction.

• Database. Classes to connect to and manage the
database.

• Geo. Classes to manage context variables on
server start-up/shutdown and session initialisa-
tion/destruction.

• Pbf. Classes to parse the PBF file(s).
• Properties. Classes to read in the configuration

files.
• Rest. End points for the API.
• Search. Classes to the run the search.
• User. Classes to handle user authentication.
• Util. Miscellaneous utility classes.

Target. The compiled Java classes.
WebContent. Static web content.
• Css. Style sheets for the website.
• Img. Images for the website.
• Include. Files that at included throughout the site.
• Js. Classes to parse the PBF file(s).
• META-INF. Java meta directory.
• User. Pages for user authentication.
• WEB-INF. Contains configuration properties and
required libraries.

51

APPENDIX A. PROJECT INFORMATION 52

A.2 Installation Information

The installation for the software is quite involved. If you wish to try the software for
yourself, it is available via:

URL https://lewismcquillan.com/BikeTourPlanner/

Username user

Password password

Tile Server

The tile server for this project is available at for the map of England has been provided
at:

https://lewismcquillan.com/tiles/z/x/y.png

Alternatively, if you wish to show the entire planet (OpenStreetMap, 2017):

https://a.tile.openstreetmap.org/z/x/y.png

Prerequisites

The following software packages are required before installation:

• Java EE SDK 7+

• Apache Tomcat 8+

• PostgreSQL 9.2+

• PostGIS 2.0+

• Apache Ant 1.9+

In terms of hardware, the following is required:

• 4GB+ RAM if using the map of the West Midlands.

• 24GB+ RAM if using the map of England.

• At least 60MB of disk space + space for the pbf you wish to use.
– 60MB for the map of West Midlands.
– 713MB for the map of England

APPENDIX A. PROJECT INFORMATION 53

Installation Instructions

1. Configure the database

$ sudo -u postgres -i
$ createuser btp
$ createdb -E UTF8 -O btp planner
$ logout

2. Install PostGIS extension

$ sudo -u postgres psql
$ \c planner
$ CREATE EXTENSION postgis ;
$ ALTER TABLE geometry_columns OWNER TO btp;
$ ALTER TABLE spatial_ref_sys OWNER TO btp;
$ \q

3. Import database tables

$ cd /path/to/ install
$ psql -d planner -a -f sql/ create_tables .sql

4. Download a PBF file, in order to obtain West Midlands (Geofabrik, 2017):

$ wget http:// download . geofabrik .de/ europe /great -
britain / england /west -midlands - latest .osm.pbf

5. Configure properties files located at: /path/to/install/config/

6. Run install script

$ cd /path/to/ install
$./ install .sh

7. Deploy generated BikeTourPlanner.war to Tomcat.

CHAPTER B

Current Solution Study

B.1 Routes

Ref. From To Distance (KM)

A Stourbridge (DY7 6RX) Selly Oak (B29 6EP) ≈18

B Cambridge (CB3 0JN) Nottingham (NG7 1BP) ≈150

C Newcastle upon Tyne (NE13 6AS) Exeter (EX4 4EA) ≈600

B.2 MapMyRide

Figure B.1: Lost information for long routes.

54

CHAPTER C

API Documentation

Category URL Pattern Purpose POST Body Returns
User /user/session Checks if the

user session is
valid

- JSON boolean

Routing /route/checkExists Checks if a
user has a
route saved
under a given
name.

The route
name

JSON boolean

/route/load Load a saved
route

The route ID JSON object
containing
route data
and name

/route/loadRoutes Loads all user
routes

- JSON array
of all route
metadata

/route/save Saves a new
route

JSON object
containing
route data

JSON object
containing
success status
and if success-
ful, the route
identifier

/geo/find Parses a
search string
and returns
an address
and geocode

A search
string, either
a postcode or
geocode

JSON array
containing
formatted
address and
postcode

/path Searches be-
tween two
geocode

A start and
end geocode,
and the search
option

JSON object
containing
search path

/share Loads a
shared route

The unique
route identi-
fier

JSON object
containing the
waypoints and
path for the
route

55

APPENDIX C. API DOCUMENTATION 56

Shortcuts /shortcuts/draw Gets data
required to
draw all
shortcuts

User selection
to draw per-
sonal and/or
public short-
cuts

JSON object
with all short-
cuts geocode
data

/shortcuts/point Gets a point
for a new
shortcut

The geocode
of the point

JSON object
of closest node

/shortcuts/user/get Gets a single
shortcut for a
user

The shortcut
ID

JSON object
of the short-
cut

/shortcuts/user/all Gets all short-
cuts for a user

- JSON array of
user shortcuts

/shortcuts/user/new Saves a new
shortcut for a
user

The data for
the new short-
cut

JSON object
of the new
shortcut

/shortcuts/user/edit Edits a cur-
rent shortcut
for a user

The ID of the
shortcut to
edit, alone
with the new
data

JSON object
of the edited
shortcut

Avoids /avoids/draw Gets data
required to
draw all
avoids

User selection
to draw per-
sonal and/or
public avoids

JSON object
with all avoids
geocode data

/avoids/edge Gets a new
edge while
building an
avoid

JSON object
with the cur-
rent edges in
the avoid

JSON object
of the avoid
with the new
edge

/avoids/user/get Gets a single
avoid for a
user

The avoid ID JSON object
of the avoid

/avoids/user/all Gets all avoids
for a user

- JSON array of
user avoids

/avoids/user/new Saves a new
avoid for a
user

The data for
the new avoid

JSON object
of the new
avoid

/avoids/user/edit Edits a cur-
rent avoid for
a user

The ID of the
avoid to edit,
along with the
new data

JSON object
of the edited
avoid

CHAPTER D

Gantt Chart

Fi
gu

re
D
.1
:
ca
pt
io
n

57

CHAPTER E

User Feedback Results

Note: A higher score on the bar chart represents more positive result.

58

APPENDIX E. USER FEEDBACK RESULTS 59

